maxon motor

maxon motor control

DEC 50/5 Amplificador 1-Q-EC

Ref.: 230572

Instrucciones de Funcionamiento

Edición Octubre 2008

El DEC (**D**igital **E**C **C**ontroller) es un amplificador de 1 cuadrante para el control de los motores EC conmutados electrónicamente (brushless CC).

- · Control de velocidad digital
- Velocidad máxima: 120 000 rpm (motore con 1 par de polos)
- Funciona como control de velocidad, control de corriente o control de velocidad en bucle abierto
- Entradas de freno, dirección y desconexión motor
- Conexión AUX.: Función ajustable (Salida de 5 V o entrada para cambio de velocidad)
- Indicador de estado con LED rojo y verde.
- Entrada valor de control (set value) mediante un potenciómetro incorporado (varios rangos de velocidad) o a través de una señal de control analógica (0 ... +5 V)
- Límite de corriente ajustable
- La ganancia puede ser ajustada en 2 etapas
- Rampa de velocidad ajustable
- Protección contra sobrecalentamiento
- Protección contra atascos (detecta el bloqueo del motor y limita la corriente)
- Regleta de terminales enchufable

1	Instrucciones de Seguridad	2
2	Datos Técnicos	3
3	Cableado Externo mínimo para los distintos modos de funcionamiento	
4	Instrucciones de Funcionamiento	
5	Entradas y Salidas	
6	Funciones de los Interruptores	12
7	Velocidad Máxima	
8	Funciones de los Potenciómetros	13
9	LED de estado de funcionamiento	14
10	Protección	15
11	Consejos sobre Emisión Electromagnética	15
	Diagrama de Bloques	
	Dimensiones	16

La última edición de estas instrucciones de funcionamiento se pueden encontrar en Internet en www.maxonmotor.com («Downloads & Service», Referencia del producto 230572).

1 Instrucciones de Seguridad

Personal Técnico Cualificado

La instalación y puesta en marcha debe ser realizada sólo por personal con experiencia y cualificado.

Legislación Local

El usuario debe asegurarse de que el servoamplificador y sus componentes, se han montado y conectado de acuerdo con la legislación local.

Desconexión de la Carga

En la primera puesta en marcha el motor debe girar libre, por ejemplo, con la carga desconectada.

Equipamiento Adicional de Seguridad

Un equipo electrónico, en principio, no está protegido contra fallos. La maquinaria y los aparatos, por lo tanto, deben estar preparados con monitorización independiente y sistemas de seguridad. Si el equipo falla o es operado incorrectamente, si la unidad de control o los cables se rompen, etc., ha de asegurarse que el motor o el aparato completo se mantienen en un modo de funcionamiento seguro.

Reparaciones

Las reparaciones han de efectuarse sólo por personal autorizado o por el fabricante. Es peligroso para el usuario abrir la unidad o hacer reparaciones en ella.

Peligro

Asegurese de que durante la instalación del DEC 50/5 ningún aparato esté conectado a la fuente de alimentación. Después de conectarlo, ¡no toque ninguna parte en movimiento!

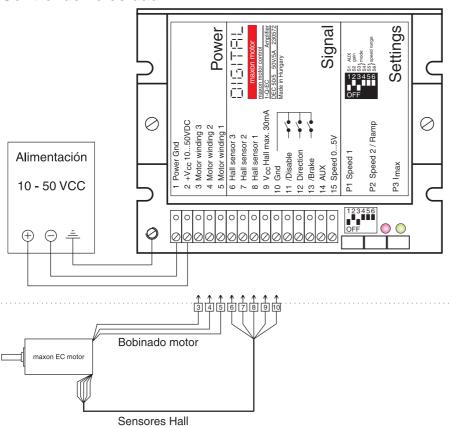
Máx. Tensión de Alimentación

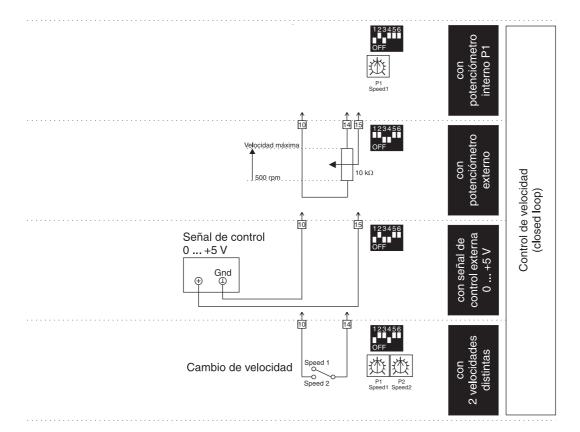
Asegurese de que la tensión de alimentación está entre 10 y 50 V. Voltajes superiores a 60 V o un error de polaridad destruirán la electrónica.

Cortocircuitos y faltas a tierra

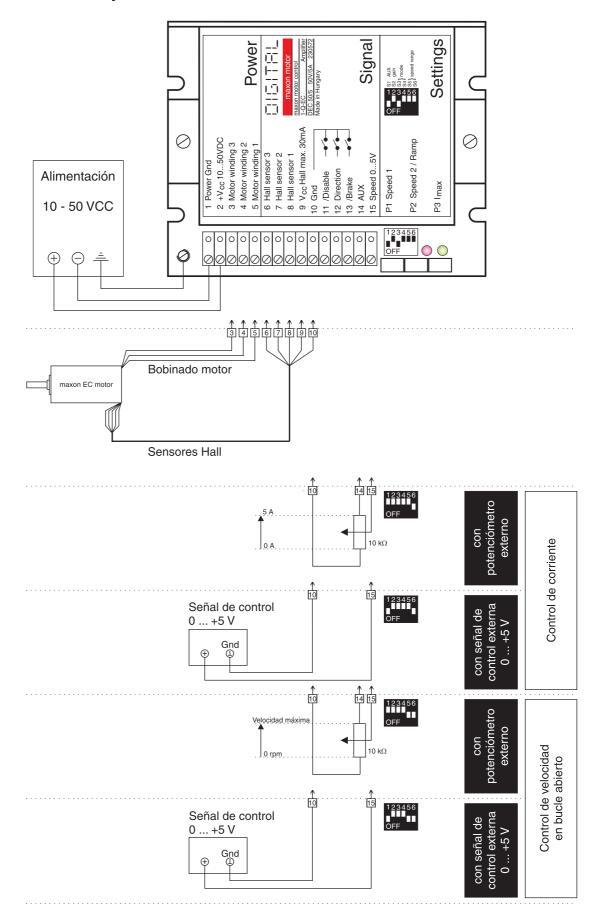
El amplificador no está protegido contra:

Cortocircuito entre los bobinados, cortocircuito entre los bobinados y tierra y cortocircuito entre los bobinados y masa.


Dispositivo Sensible a las Descargas Electroestáticas (ESD)


2 Datos Técnicos

2.1	Datos Eléctric	os	
		Tensión de alimentación V _{CC} (Rizo < 5%)	10 - 50 VCC
		Máx. tensión de salida	
		Máx. corriente de salida en continuo I _{cont}	
		Máx. corriente de salida I _{max}	
		Frecuencia de conmutación	
		Máx. velocidad (motore con 1 par de polos)	120 000 rpm
2.2	Entradas		
		Velocidad «Speed»	entrada analógica (0 5 V)
		·	Resolución: 1024 pasos
		Desconexión motor «/Disable»	
		Dirección «Direction»	
		Freno «/Brake»	
		Sensores Hall	1, 2, 3
2.3	Entradas / sal	idas	
		AUX (configurable)	entrada digital / salida +5 VCC
2.4	Salidas de ten	sión	
		Voltaje de alimentación de los sensores Hall	7 12 VCC, máx. 30 mA
2.5	Conexiones d	el motor	
		Bobinado motor 1	
		Bobinado motor 2	
		Bobinado motor 3	
2.6	Potenciómetro	os de ajuste	
		Velocidad 1, Velocidad 2 / Rampa, I _{max} , ganancia	
2.7	Piloto indicad	or LED	
		verde = ok	
		rojo = fallo	
2.8	Rango de Tem	nperatura ambiente / Humedad	
	· ·	Funcionamiento	-10 +45°C
		Almacenamiento	
		Sin condensación	
2.9	Funciones de	protección	
		Control de la temperatura de la etapa de potencia	T > 100°C
		Protección contra bloqueos Limita la corriente del	
2.10	Datos Mecánio	cos	
		Peso	approx. 155 g
		Dimensiones (L x W x H)	
		Placa de montaje	
		Separación de los agujeros de montaje	
2.11	Terminales		
		Clavijas de circuito impreso (terminales enchufables)	15 polos
		paso	3.5 mm
		apto para sección de cable 0.14 1 mm² mu	lti filar o 0.14 1.3 mm² conductor único AWG 16-26
			AVVG 10-20


3 Cableado Externo Mínimo para los Distintos Modos de Funcionamiento

3.1 Control de velocidad

3.2 Control de corriente y control de velocidad en bucle abierto

4 Instrucciones de Funcionamiento

4.1 Requerimientos de la fuente de alimentación

Se puede usar cualquier fuente de alimentación disponible, mientras cumpla los requerimientos mínimos descritos a continuación.

Durante la puesta en marcha y la fase de ajuste, recomendamos separar el motor de la máquina para prevenir daños debidos a movimientos no controlados del motor.

Requerimientos de la alimentación

Voltaje de salida	V _{CC} mín. 10 VCC; V _{CC} máx. 50 VCC
Rizo	< 5 %
Corriente de salida	5 A en continuo depende de la carga
	Acceleración 10 A

La tensión necesaria puede ser calculada de la siguiente manera:

Valores conocidos

- ⇒ Par de funcionamiento M_B [mNm]
- ⇒ Velocidad de funcionamiento n_B [rpm]
- ⇒ Tensión nominal del motor U_N [V]
- ⇒ Velocidad en vacío del motor a U_N, n₀ [rpm]
- ⇔ Gradiente velocidad/par del motor Δn/ΔM [rpm/mNm]

Valores buscados

⇒ Voltaje de alimentación V_{CC} [V]

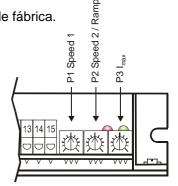
Solution

$$V_{CC} = \frac{U_N}{n_0} \cdot (n_B + \frac{\Delta n}{\Delta M} \cdot M_B) \cdot \frac{1}{0.95} + 1V$$

Escoja una fuente de alimentación capaz de suministrar este voltaje calculado en carga. Esta fórmula considera una máxima caída de tensión en el DEC 50/5 de 1 Voltio y un ciclo máx. de PWM del 95 %.

Nota

Por favor vea el <u>capítulo 5.1.5, «Función de freno»</u> cuando use la entrada de freno


4.2 Ajuste de los potenciómetros

4.2.1 Pre-ajuste

Con el preajuste de los potenciómetros de fábrica, el amplificador está en posición adecuada para iniciar los ajustes.

Todas las unidades DEC vienen preajustadas de fábrica.

Pre-ajuste de los potenciómetros			
P1 Velocidad 1 50 %			
P2	Velocidad 2/Rampa	50 %	
P3	I _{max}	50 %	

Nota

Final izquierdo de los potenciómetros: Valor mínimo Final derecho de los potenciómetros: Valor máximo

4.2.2 Ajuste

Control digital de velocidad

- Dependiendo del modo de funcionamiento, ajuste la señal de control hasta alcanzar la velocidad deseada. Si es necesario, ajuste la velocidad máx. con los interruptores S5 y S6 (ver cap. 7 «Rangos de Velocidad»).
- Ajuste el potenciómetro P3 I_{max} para fijar el límite de corriente deseado. La corriente máxima se puede ajustar de manera lineal desde 0 a 10 A con el potenciómetro P3.
- Ajuste el interruptor S2 gain hasta que la ganancia sea la deseada.
 (S2 OFF: ganancia alta, S2 ON: ganancia baja)
 Importante: Si el motor vibra o empieza a hacer ruido, la ganancia se ha ajustado demasiado alta. Ponga el interruptor S2 en la posición ON.

Control digital de corriente

- La velocidad máxima está en el rango de 500 ... 25 000 rpm (motore con 1 par de polos) se puede ajustar de manera linear con el potenciómetro P1, y es independiente de la posición de los interruptores S5 y S6 (ver cap. 7, «Rangos de Velocidad»).
- Ajuste la señal de control en la entrada «Velocidad» hasta que se alcance el par deseado.

Nota

Un valor de control en el rango 0 ... 5 V en la entrada «Speed» equivale a un control de corriente de aprox. 0 ... 5 A.

Ancho de banda del controlador de corriente: aprox. 15 Hz

Control de velocidad en bucle abierto

- Ajuste la señal de control en la entrada «Speed» hasta que se alcance la velocidad deseada. El valor de control de 0... +5 V es igual al voltaje del motor de 0 V... V_{CC}. La velocidad máxima está determinada por el voltaje de la fuente de alimentación y la constante de velocidad del motor y es independiente de la posición de los interruptores \$5 y \$6.
- Ajuste el potenciómetro P3 I_{max} para fijar el límite deseado.
 La corriente máxima se puede ajustar de manera lineal desde 0 a 10 A con el potenciómetro P3.

5 Entradas y Salidas

5.1 Entradas

5.1.1 Señal de control «Speed»

La señal de control analógica se aplica a la entrada «Speed».

La entrada de señal de control se usa para los siguientes modos de funcionamiento: control de velocidad, control de corriente y control de velocidad en bucle abierto.

La entrada «Speed» está protegida contra sobretensiones.

Rango de voltaje de entrada	0 +5 V (ref: Gnd)
Impedancia de entrada	>1 MΩ (de 0 +5 V)
Protección contra sobretensión	-50 +50 V

Uso de un potenciómetro externo

Si se usa un potenciómetro externo, la salida AUX (interruptor S1 AUX ON) puede usarse como salida de 5 V para el potenciómetro.

Resistencia recomendada del potenciómetro: 10 kΩ

Nota

0 V equivale a la velocidad mínima (ver cápitulo 7, «Rangos de Velocidad»)

5.1.2 Desconexión motor «/Disable»

Deshabilita la etapa de potencia. Si se conecta esta entrada a masa «Gnd» o se aplica un voltaje menor de 0.8 V, la etapa de potencia queda desactivada y el motor gira libremente hasta parar. Si la entrada no está conectada o se aplica un voltaje mayor de 2.4 V, el amplificador es activado. Durante la aceleración se lleva a cabo una rampa de velocidad.

La entrada «/Disable» está protegida contra sobretensiones.

Rango de voltaje de entrada	0 +5 V
Impedancia de entrada	33 kΩ pull-up resistor at +5 V
Protección contra sobretensión	-50 +50 V
Tiempo de respuesta	aprox. 12 ms
«/Disable» activa	Entrada n.c. o voltaje > 2.4 V
«/Disable» inactiva	Entrada a masa o voltaje < 0.8 V

Nota

Si se cambia la posición de los interruptores, la nueva configuración se adopta haciendo un Disable y un enable.

5.1.3 Dirección «Direction»

Cuando cambia el nivel en la entrada, el motor frena de forma incontrolada (como si se cortocircuitaran los bobinados, ver <u>cap. 5.1.5, «Función Freno»</u>) y acelera en el sentido contrario, hasta que se alcanza de nuevo la velocidad nominal. La rampa de velocidad se usa sólo durante la aceleración. La entrada «Direction» está protegida contra sobretensiones.

Rango de voltaje de entrada	0 +5 V
Impedancia de entrada	33 k Ω resistencia a positivo (pull up) +5 V
Protección contra sobretensión	-50 +50 V
Tiempo de respuesta	aprox. 12 ms
Sentido agujas (CW)	entrada n.c. o voltaje > 2.4 V
Sentido contrario agujas (CCW)	entrada a masa o voltaje < 0.8 V

Si se cambia la dirección cuando el motor está girando, deben observarse las limitaciones descritas en el <u>cap. 5.1.5, «Función Freno»</u>, o el amplificador puede resultar dañado.

5.1.4 Función de rampa «Ramp»

La función de rampa permite tener un periodo de aceleración controlado cuando se arranca el motor o si se cambia el valor de la señal de control. El tiempo de aceleración hasta alcanzar la velocidad preseleccionada se ajusta con el potenciómetro **P2 Ramp** (ver cap. 7, «Rangos de Velocidad»).

Tiempo de aceleración ajustable con el potenciómetro P2 Ramp	aprox. 20 ms aprox. 10 s
Tope izquierdo	aprox. 20 ms
Tope derecho	aprox. 10 s
Paso	lineal aprox. 1.0 s / paso

Ejemplo:

Potenciómetro P2 Ramp: 40 %

Cambio en la señal de control aplicada a la entrada «Speed»: de 0 V a 3 V

Tiempo de aceleración:

Taceleración =
$$\frac{3V}{5V} \cdot 40 \% \cdot 10 s = aprox. 2.4 s$$

Nota

Sólo se puede alcanzar el tiempo mínimo de aceleración si la ganancia es alta y el motor suficientemente dinámico.

5.1.5 Función de Freno «/Brake»

Si la entrada no está conectada o el voltaje aplicado es mayor de 2.4 V, la función de freno está desactivada.

Si conectamos esta entrada a Gnd o a un voltaje inferior a 0.8 V, se activa la función de freno y el motor se para, cortocircuitándose las bobinas del motor. Las bobinas permanecen cortocircuitadas hasta que se desactive la función de freno.

El «/Brake» funciona también cuando el «/Disable» está activado.

La entrada «/Brake» está protegida contra sobretensiones.

Rango de voltaje de entrada	0 +5 V
Impedancia de entrada	33 k Ω resistencia a positivo (pull up) +5 V
Protección contra sobretensión	-50 +50 V
Máx. Corriente de frenado	30 A
Tiempo de respuesta	aprox. 12 ms
«Brake» inactivo	entrada n.c. o voltaje > 2.4 V
«Brake» activo	entrada a masa o voltaje < 0.8 V

La máxima velocidad de freno permitida está limitada por la máxima corriente de cortocircuito permitida y la máxima energía cinética:

- I <= 30 A
- W_k <= 20 Ws

los valores se calculan de la siguiente manera:

La máxima velocidad de freno permitida se calcula con los datos del motor:

máx. velocidad de freno permitida limitada por

corriente (I = 30 A)

$$n_{\text{max}} = 30A \cdot k_n \cdot \left(R_{Ph-Ph} + 0.05 \,\Omega\right) \qquad [rpm]$$

k_n = Constante de velocidad [rpm/V]

 R_{Ph-Ph} = Resistencia entre terminales fase a fase [Ω]

En función del momento de inercia, la máxima velocidad se determina con la siguiente fórmula:

máx. velocidad de freno permitida limitada por energía cinética $(W_k = 20 \text{ Ws})$

$$n_{\text{max}} = \sqrt{\frac{365}{J_R + J_L}} \cdot 10\,000 \quad [rpm]$$

 J_R = Inercia del rotor [gcm²] J_L = Inercia de la carga [gcm²]

	maxon motor	
Instrucciones de Funcionamiento		DEC 50/5 Amplificador 1-Q-EC

5.1.6 «AUX»

El terminal «AUX» puede usarse como entrada o salida, dependiendo de la posición del interruptor.

Sólo está protegido contra sobretensiones si el interruptor S1 está abierto.

Interruptor S1 cerrado

Función	Salida de voltaje
Voltaje de salida	+5 VCC ± 5 %
Resistencia Interna	220 Ω
Corriente de salida, diseñada para un	
potenciómetro externo >=10 kΩ	500 μΑ

Interruptor S1 abierto

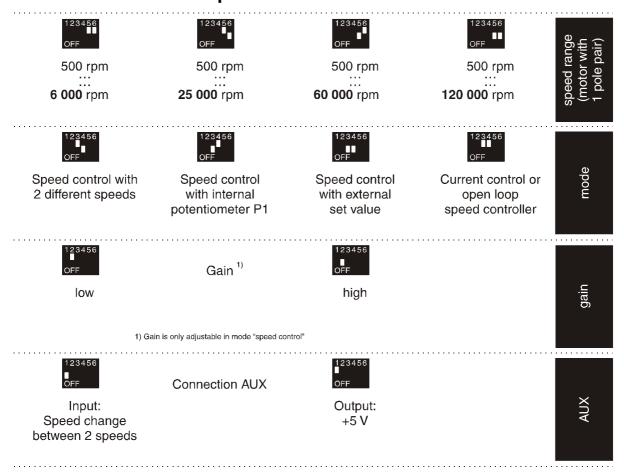
Función	Cambio de velocidad
Rango de voltaje de entrada	0 +5 V
Impedancia de entrada	33 kΩ resistencia a positivo +5 V
Protección contra sobretensión	-50 +50 V
Regulación de velocidad con potenciómetro Speed 1	entrada n.c. o voltaje > 4.0 V
Regulación de velocidad con potenciómetro Speed 2	entrada a masa o voltaje < 1.0 V.

5.1.7 «Hall sensor 1», «Hall sensor 2», «Hall sensor 3»

Los sensores Hall se necesitan para detectar la posición del rotor. Las entradas «Hall sensor» están protegidas contra sobretensiones.

Rango de voltaje de entrada	0 +5 V
Impedancia de entrada	15 kΩ resistencia a positivo at +5 V
Valor de voltaje «bajo»	máx. 0.8 V
Valor de voltaje «alto»	mín. 2.4 V
Protección contra sobretensión	-50 +50 V

Adaptado para circuito integrado usando Trigger Schmitt y salida a colector abierto.


5.2 Salidas

5.2.1 «V_{CC} Hall»

Alimentación de los sensores Hall.

Voltaje de salida	7 12 VCC
Máx. corriente de salida	30 mA (corriente limitada)

6 Funciones de los Interruptores

7 Rangos de Velocidad

En el modo control de velocidad el rango del valor de control (0 ... +5 V) equivale a los siguientes rangos de velocidad:

	Tipo de motore				
Interruptor S5 y S6	Motore con	Motore con	Motore con		
	1 par de polos	4 pares de polos	8 pares de polos		
1234 <u>56</u> OFF	500 6 000 rpm	125 1 500 rpm	67 750 rpm		
123456 OFF	500 25 000 rpm	125 6 250 rpm	67 3 125 rpm		
123456 OFF	500 60 000 rpm	125 15 000 rpm	67 7 500 rpm		
123456 ••• OFF	500 120 000 rpm	125 30 000 rpm	67 15 000 rpm		

Nota

- En modo control de corriente, el potenciometro P1ajusta la velocidad máxima dentro de la gama de 500... 25.000 rpm (motore con 1 par de polos), independientemente de la posición de los interruptores S5 y S6. Para los motores de más de dos polos, la velocidad se muestra en la tabla de arriba.
- En modo de control de velocidad con bucle abierto, el valor 0 V es igual a un voltaje del motor de 0 V y por lo tanto una velocidad de 0 rpm. La velocidad máxima viene dada por el voltaje de alimentación y por la constante de velocidad del motor, independiente a la posición de los interruptores S5 y S6.

8 Funciones de los Potenciómetros

La siguiente tabla muestra qué potenciómetro está activo en cada modo de funcionamiento.

	Modo							
	Control de velocidad (bucle cerrado)			Control de corriente		Control de velocidad en bucle abierto		
Función de los potenciómetros	Señal de control con el potenciómetro interno P1	Señal de control con potenciómetro externo	Con Señal de control externa 0 0 0 +5 V	Con 2 velocidades distintas	Señal de control con potenciómetro externo	Con Señal de control externa 0 +5 V	Señal de control con potenciómetro externo	Con Señal de control externa 0 +5 V
P1 Speed1	✓			✓	✓	✓		
P2 Speed2				✓				
P2 Ramp	✓	√	√					
P3 I _{max}	√	\checkmark	✓	✓			✓	✓

9 LED de estado de funcionamiento

Los LEDs verde y rojo muestran el estado del sistema.

9.1 No LED

Razón:

- No hay tensión de alimentación
- Fusible fundido
- Polaridad equivocada de la alimentación
- Cortocircuito en la alimentación de los sensores Hall

9.2 LED Verde

Intermitencia (LED verde)	Estado
LED on	Amplificador activo
Т	Amplificador deshabilitado «/Disable»
	Función de freno activa «/Brake»

9.3 El LED Rojo parpadea intermitentemente

El controlador ha detectado señales incorrectas en las entradas de los sensores Hall.

Razón:

- Sensores Hall no conectados o conectados de manera incorrecta
- Conexión de la alimentación de los sensores Hall defectuosa
- Excesivas interferencias en cables de alimentación de los sensores Hall (Solución: usar cable apantallado)
- Sensores Hall del motor defectuosos

9.4 El LED Rojo parpadea regularmente

Se pueden distinguir los siguientes tipos de error en función de la intermitencia:

Intermitencia (LED rojo)	Mensaje de error
Т	Protección contra sobrecarga térmica activa
	 El eje del motor está bloqueado Carga demasiado grande Ajuste de I_{max} demasiado bajo Bobinas sin conectar
	Una vez conectado, el controlador detecta señales incorrectas de los sensores => revise el cableado de los sensores Hall y sus señales
·····	Modo de funcionamiento equivocado en los interruptores S3-S6

10 Protección

10.1 Protección contra sobrecalentamiento

Si la temperatura de la etapa de potencia excede el límite de Temp. (alrededor de los 100°C) durante más de 1.5 s, se desconecta la etapa de salida.

El tipo de error puede verse en los esquemas del <u>cap. 9 «LED de estado de</u> funcionamiento».

Si la temperatura baja de los 80°C, se conecta de nuevo. Se utilizará una rampa de velocidad durante la aceleración.

10.2 Protección contra atascos

Si el eje del motor permanece bloqueado durante más de 1.5 s, la corriente de limita a 4.2 A, a no ser que hayamos fijado una corriente menor con el potenciómetro I_{max}.

Nota: La protección contra atascos no está activa en el modo de control de corriente.

11 Instalación EMC-compatible

Fuente de alimentación (+V_{CC} - Power Gnd)

- · Normalmente no se requiere apantallar los cables.
- Si se usan varios amplificadores conectados a la misma fuente de alimentación, se recomienda una conexión en estrella.

Cables del motor (> 30 cm)

- Es altamente recomendable apantallar los cables.
- Conectar la malla del cable apantallado en ambos lados.

Lado del DEC 50/5: Parte inferior de la carcasa

Lado del motor : Carcasa del motor o con una inpedancia baja entre la carcasa y la

construcción mecánica.

· Usar cables separados.

Cables de los sensores Hall (> 30 cm)

- Es altamente recomendable apantallar los cables.
- Conectar la malla del cable apantallado en ambos lados.

Lado del DEC 50/5: Parte inferior de la carcasa

Lado del motor : Carcasa del motor o con una inpedancia baja entre la carcasa y la

construcción mecánica.

· Usar cables separados.

Conexión directa del cable motor/ Hall (≤ 30 cm) para el DEC 50/5

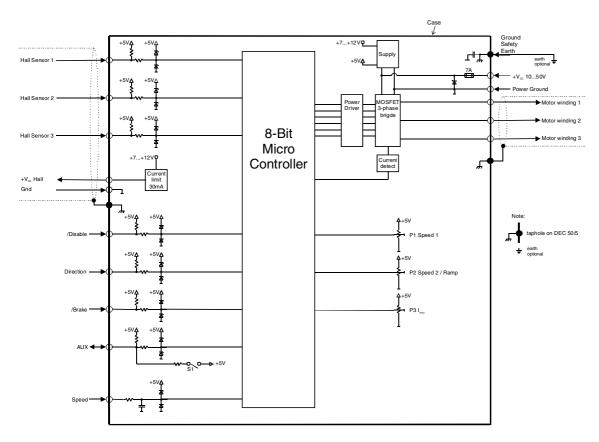
- Apantalle la carcasa del DEC con el cable del motor/Hall.
- Conectar la pantalla en ambos lados.

ó

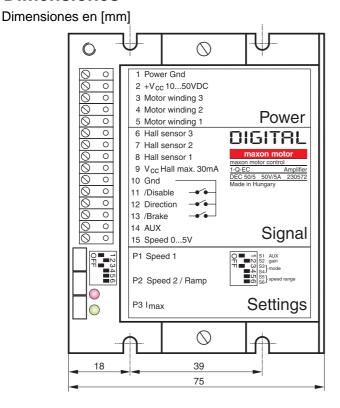
- Conecte con la menor resistividad posible la carcasa del motor a la parte inferior de la carcasa del DEC 50/5.
- Diseñe el cable de conexión del motor/Hall tan corto como sea posible con la conexión mencionada anteriormente.

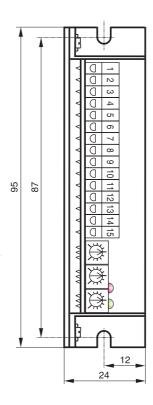
Señales analógicas (AUX, Speed)

- Normalmente no se requiere apantallar los cables.
- Use cable apantallado con señales analógicas de bajo nivel y entorno electromagnético agresivo.
- Normalmente se recomienda conectar la malla del cable en ambos lados. Conecte únicamente en un lado si detectan problemas de interferencias a 50/60 Hz.


Señales digitales (Disable, Direction, Brake)

No es necesario apantallar los cables.


Vea también el diagrama de bloques del capítulo 12.


En términos prácticos, sólo la unidad completa comprendiendo todos los componentes (motor, amplificador, fuente de alimentación, filtros, cables, etc) puede someterse a un test de emisiones electromagnéticas para asegurarse que esté libre de ruido y que cumple la especificación CE.

12 Diagrama de Bloques

13 Dimensiones

